Section 11.1: Sequences and Series
Video 1: Sequences
A sequence is a function that computes an ordered list.
A finite sequence has the set of natural numbers $\{1,2, \ldots, n\}$ as its domain.
An infinite sequence has the set of natural numbers $\{1,2,3, \ldots\}$ as its domain.
We use a_{n} to represent the general term or nth term.

1) List the first 5 terms of the given sequence.
a) $a_{n}=5 n+4$

$$
\begin{aligned}
& a_{n} \\
& =5 n+4
\end{aligned}
$$

$$
5(1)+4=9 \quad 5(2)+4=14 \quad 5(3)+4=19 \quad D:\{1,2,3,4,5\}
$$

$5(4)+4=24 \quad 5(5)+4=29$ $9,14,19,24,29$
b) $a_{n}=\left(\frac{1}{2}\right)^{n}$

$$
(1 / 2)^{1}(1 / 2)^{2}(1 / 2)^{3}(1 / 2)^{4}(1 / 2)^{5}
$$

$$
\frac{1}{2}
$$

c) $a_{n}=n^{2}$

$$
a^{2} \quad 3^{2}
$$

$4^{2} \quad 5^{2}$

$$
1,4,9,16,25 \quad \text { Diverges }
$$

b) $(-1)^{n} \cdot n^{3}$

$$
(-1)^{n+1}
$$

$$
(-1)^{1} \cdot 1^{3}
$$

$$
-1,-27,64,-125
$$

c) $a_{n}=\frac{2 n+7}{n^{2}-3}$

$$
\begin{aligned}
& \frac{2(1)+7}{1^{2}-3}, \frac{2(2)+7}{2^{2}-3}, \frac{2(3)+7}{3^{2}-3}, \frac{2(4)+7}{4^{2}-3} \frac{2(5)+7}{5^{2}-3} \\
& -\frac{9}{2}, 11, \frac{13}{6}, \frac{15}{13}, \frac{17}{22}
\end{aligned}
$$

Video 2: Recursively Defined Sequences
Besides listing a formula for the general term of a sequence, we can define a sequence by listing its first term, a_{1}, and a formula for how to create any other term from the preceding term.
2) Find the first 5 terms of the given sequence.
a) $a_{1}=6, a_{n}=4 \cdot a_{n-1}-5$

b) $a_{1}=-4, a_{n}=-2\left(a_{n-1}\right)+4 n-5$

$$
a_{1}=-4
$$

$$
n=2 \quad a_{2}=-2(-4)+4(2)-5=11
$$

$$
n=3 \quad a_{3}=-2(11)+4(3)-5=-15 \quad-4,11,-15,41,-67
$$

$$
\begin{array}{ll}
n=4 & a_{4}=-2(-15)+4(4)-5=41 \\
n=5 & a_{5}=-2(41)+4(5)-5=-67
\end{array}
$$

Fibonacci Sequence

$$
\begin{aligned}
& a_{1}=1 \quad a_{2}=1 \quad \text { for } n \geq 3 \\
& \\
& \qquad a_{n}=a_{n-1}+a_{n-2}
\end{aligned}
$$

$$
1,1,2,3,5,8,13, \ldots
$$

A series is the sum of a sequence.
$\Sigma: \operatorname{sigma}$
S_{n} Finite series: $S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}=\sum_{n=1}^{n} a_{i} \leftarrow$ start at $i=1$ go through $i=n$
S_{∞} Infinite series: $S_{\infty}=a_{1}+a_{2}+a_{3}+\ldots=\sum_{i=1}^{\infty} a_{i}$. adding a_{i}
3) Evaluate.

$$
\text { a) } \begin{aligned}
\sum_{i=1}^{5}(3 i+7) & =[3(1)+7]+[3(2)+7]+[3(3)+7]+[3(4)+7]+[3(5)+7] \\
& =10+13+16+19+22 \\
& =80
\end{aligned}
$$

$\begin{array}{cc}1 & =41 a 1 \\ 2 \\ \vdots & \vdots \\ 8 & \end{array}$
b) $\sum_{i=1}^{6}\left(i^{2}+3 i-4\right)$

$$
\text { c) } \sum_{i=1}^{8} 4^{i}
$$

$$
=4^{1}+4^{2}+4^{3}+4^{4}+4^{5}+4^{6}+4^{7}+4^{8}
$$

$$
=4+16+64+256+1024+4096+16,384+65,536
$$

$$
=87,380
$$

4) Write the terms for the series, and evaluate (if possible).
a) $\sum_{i=6}^{10} a_{i}=a_{6}+a_{7}+a_{8}+a_{9}+a_{10}$

$$
\begin{aligned}
& \text { b) } \\
& \sum^{4}\left(5 x_{i}+8\right) \text {, if } x_{1}=6, x_{2}=10, x_{3}=14 \text {, and } x_{4}=18 \\
& \left.{ }_{i=1}^{5}\left(x_{6}\right)+8\right]+\left[\begin{array}{c}
\left.5\left(x_{2}\right)+8\right] \\
10
\end{array}+\left[\begin{array}{c}
\left.5\left(x_{3}\right)+8\right] \\
14
\end{array}+\left[\begin{array}{c}
\left.5\left(x_{4}\right)+8\right] \\
18
\end{array}\right.\right.\right. \\
& =38+58+78+98 \\
& =272
\end{aligned}
$$

Δx : delta x

$$
\text { c) } \begin{aligned}
& \sum_{i=1}^{3} f\left(x_{i}\right) \cdot \Delta x, \text { if } f(x)=x^{3}, x_{1}=5, x_{2}=9, x_{3}=13 \text {, and } \Delta x=4 . \\
& f\left(x_{1}\right) \cdot \Delta x+f\left(X_{2}\right) \cdot \Delta x+f\left(x_{3}\right) \cdot \Delta x \\
& \\
& x_{1}^{3} \cdot 4+x_{2}^{3} \cdot 4+x_{3}^{3} \cdot 4 \\
& = \\
& =5^{3} \cdot 4+125 \cdot 4+729 \cdot 4+2197 \cdot 4 \\
& =12,204
\end{aligned}
$$

Video 4: Summation Properties and Rules
$\left.\left.\begin{array}{c|c}\text { Summation Properties } & \text { Summation Rules } \\ \hline \bullet \sum_{i=1}^{n} c=n \cdot c & \sum_{i=1}^{n} i=1+2+\ldots+n=\frac{n(n+1)}{2} \\ \bullet \sum_{i=1}^{n} c \cdot a_{i}=c \cdot \sum_{i=1}^{n} a_{i} & \sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\ \sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} \\ \sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}\end{array}\right] \sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}\right]$
5) Use the summation properties and rules to evaluate each series.

$$
\text { a) } \begin{aligned}
\sum_{i=1}^{27} 8 & =\overbrace{8+8+8 \ldots+8}^{27} \\
& 27 \cdot 8=216
\end{aligned}
$$

$$
\text { b) } \sum_{i=1}^{15} i_{i}=4 \cdot \sum_{i=1}^{15} i^{3}
$$

$$
\left(\frac{n(n+1)}{2}\right)^{2}
$$

$$
=4\left(\frac{15 \cdot 8}{x_{1}}\right)^{2} \longleftarrow
$$

$$
=4(120)^{2}
$$

$$
=4 \cdot 14,400
$$

$$
=5 \geqslant 600
$$

$$
\begin{aligned}
& \text { c) } \sum_{i=1}^{12}\left(9_{i-7}=\sqrt{12} \sum_{i=1}-\sum_{i=1}^{12} 7\right. \\
& =9\left(\frac{n(n+1)}{2}\right)-12.7 \\
& =9\left(\frac{16 \cdot 13}{2}\right)-12 \cdot 7 \\
& =9.78-12.7 \\
& =702-84=618 \\
& \text { d) } \sum_{i=1}^{7}\left(i^{2}+8 i+12\right) \\
& =\sum_{i=1}^{7} i^{2}+8 \sum_{i=1}^{7} i+\sum_{i=1}^{7} 12 \\
& i^{2}: \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{7(8)^{7+14(15)^{2(7)+1}}}{631}+8 \cdot \frac{7 \cdot 8^{4}}{21}+7.12 \\
& i=\frac{n(n+1)}{2} \\
& =7.4 \cdot 5+8 \cdot 7.4+7.12 \\
& =140+224+84 \\
& =448
\end{aligned}
$$

